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1 Introduction

This note contains detailed examples of the Kalman fit algorithm using either space
points or hits (larsoft class RecoBase/Hit) as measurements. In either case, we
assume that we want to use a measurement (space point or hit) to improve a track
hypothesis specified on surface of constant z.

2 Track Hypothesis

We use the following track parameters to describe a track on a z-plane surface: (x,
x′ = dx/dz, y, y′ = dy/dz, 1/p). Formally, we define a state vector x as consisting of
the following five track parameters.

x =


x
x′

y
y′

1/p

 . (1)
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The track parameter state vector has an error matrix C, which for simplicity we will
assume initially to have a 2+2+1 block diagonal structure.

C =


σ2

x σ2
xx′ 0 0 0

σ2
xx′ σ2

x′ 0 0 0
0 0 σ2

y σ2
yy′ 0

0 0 σ2
yy′ σ2

y′ 0
0 0 0 0 σ2

p−1

 . (2)

That is, we assume that the errors in the two Cartesian views are not correlated, and
that the momentum error is not correlated with any other error (consistent with the
absence of a magnetic field). Also, we can be virtually certain that the position and
slope errors are positively correlated (σ2

xx′ > 0 and σ2
yy′ > 0). For example, if the

errors are entirely due to multiple Coulomb scattering over a distance L with rms
scattering angle σθ, then (in the small angle approximation),

σ2
x =

L2

3
σ2

θ , (3)

σ2
xx′ =

L

2
σ2

θ , (4)

σ2
x′ = σ2

θ , (5)

with correlation coefficient ρx = σ2
xx′/(σxσx′) =

√
3/2.

3 Space Point as Measurement

Given a measured space point (xm, ym, zm), the z-coordinate defines the measurement
surface and the track surface. We define a two-dimensinoal measurement vector m
consisting of the x and y coordinates.

m =

[
xm

ym

]
. (6)

The measurement vector has an error matrix V which can be obtained by projecting
the space point error matrix onto the measurement surface. We write the measure-
ment error matrix as follows.

V =

[
σ2

mx 0
0 σ2

my

]
. (7)

Again, we assume x and y are uncorrelated.
We can write the predicted measurement vector as

mpred =

[
x
y

]
, (8)

where x and y are simply the corresponding track parameters. The error matrix of
the prediction in measurement coordinates is denoted by T, and is related to track
parameter error matrix C as

T = HCHT , (9)
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where the matrix H is the Jacobian of the prediction function. In the case of space
points,

H =
∂ (x, y)

∂ (x, x′, y, y′, p−1)
, (10)

=

[ ∂x
∂x

∂x
∂x′

∂x
∂y

∂x
∂y′

∂x
∂(p−1)

∂y
∂x

∂y
∂x′

∂y
∂y

∂y
∂y′

∂y
∂(p−1)

]
, (11)

=

[
1 0 0 0 0
0 0 1 0 0

]
. (12)

Finally, we define the residual vector r is the difference between the prediction
and measurement.

r = m−mpred =

[
xm − x
ym − y

]
, (13)

The residual vector has its own error matrix R, which includes contributions from the
measurement and track.

R = V + T, (14)

=

[
σ2

mx + σ2
x 0

0 σ2
my + σ2

y

]
. (15)

The Kalman algorithm uses an updating formula such that the updated state
vector x′ is deviated compared to the original state vector x by an amount that is
proportional to the residual vector r.

x′ = x + Kr, (16)

where K is called the Kalman gain matrix. The gain matrix can be calculated in
terms of previously defined quantities as

K = CHT R−1, (17)

=


σ2

x σ2
xx′ 0 0 0

σ2
xx′ σ2

x′ 0 0 0
0 0 σ2

y σ2
yy′ 0

0 0 σ2
yy′ σ2

y′ 0
0 0 0 0 σ2

p−1




1 0
0 0
0 1
0 0
0 0


 1

σ2
mx+σ2

x
0

0 1
σ2

my+σ2
y

 , (18)

=



σ2
x

σ2
mx+σ2

x
0

σ2
xx′

σ2
mx+σ2

x
0

0
σ2

y

σ2
my+σ2

y

0
σ2

yy′

σ2
my+σ2

y

0 0


. (19)

The updated track error matrix can be calculated in terms of the Kalman gain matrix
using the following formula.

C′ = (1− KH) C. (20)
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Using the Kalman updating formula, the filtered track parameter state vector is

x′ =



xσ2
mx+xmσ2

x

σ2
mx+σ2

x

x′ +
(

σ2
xx′

σ2
mx+σ2

x

)
(xm − x)

yσ2
my+ymσ2

y

σ2
my+σ2

y

y′ +
(

σ2
yy′

σ2
my+σ2

y

)
(ym − y)

1/p


. (21)

The filtered track error matrix is

C′ =



(
σ2

mx

σ2
mx+σ2

x

)
σ2

x

(
σ2

mx

σ2
mx+σ2

x

)
σ2

xx′ 0 0 0(
σ2

mx

σ2
mx+σ2

x

)
σ2

xx′ σ2
x′ −

σ4
xx′

σ2
mx+σ2

x
0 0 0

0 0
(

σ2
my

σ2
my+σ2

y

)
σ2

y

(
σ2

my

σ2
my+σ2

y

)
σ2

yy′ 0

0 0
(

σ2
my

σ2
my+σ2

y

)
σ2

yy′ σ2
y′ −

σ4
yy′

σ2
my+σ2

y
0

0 0 0 0 σ2
p−1


. (22)

By way of interpretation, we can make the following conclusions regarding the
filtered track parameters and errors.

• The filtered position and error are simply the weighted average of the prediction
and measurement, a result which could have been easily arrived at without the
Kalman fit.

• The filtered slope is updated to the extent that the slope is correlated with the
position in the original track error matrix.

• The error of the filtered slope is reduced compared to the prediction provided
that the correlation of the slope and position is positive.

• The track error matrix retains a 2+2+1 block diagonal structure (under our
assumption that the space point errors are not correlated between x and y).

• The momentum and its error are are not modified by the Kalman fit under the
assumptions we have made (zero correlation between position and momentum,
which follows from zero magnetic field).

4 Vertical Wire Hit as Measurement

In this section, we assume that a measurement consists of a time tm with error σt

measured using a vertical wire (parallel to the y-axis). In other words, the measure-
ment surface and track surface are both planes of constant z, which we take as the
same surface. The predicted time depends on the track parameter x as follows,

t = x/v, (23)
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where v is the drift velocity. Following the development of the previous section, we
define the residual r as,

r = tm − t, (24)

with error

R = σ2
r = σ2

t + σ2
x/v

2. (25)

The Jacobian H of the prediction function is

H =
∂t

∂ (x, x′, y, y′, p−1)
, (26)

=
[

∂t
∂x

∂t
∂x′

∂t
∂y

∂t
∂y′

∂t
∂(p−1)

]
, (27)

=
[

1
v

0 0 0 0
]
. (28)

The Kalman gain matrix K is

K = CHT R−1, (29)

=


σ2

x σ2
xx′ 0 0 0

σ2
xx′ σ2

x′ 0 0 0
0 0 σ2

y σ2
yy′ 0

0 0 σ2
yy′ σ2

y′ 0
0 0 0 0 σ2

p−1





1
v

0
0
0
0


(

v2

v2σ2
t + σ2

x

)
, (30)

=



vσ2
x

v2σ2
t +σ2

x
vσ2

xx′
v2σ2

t +σ2
x

0
0
0


. (31)

The filtered track parameter state vector is

x′ =



xv2σ2
t +tmvσ2

x

v2σ2
t +σ2

x

x′ +
(

vσ2
xx′

v2σ2
t +σ2

x

)
(tm − t)

y
y′

1/p


. (32)

The filtered track error matrix is

C′ =



(
v2σ2

t

v2σ2
t +σ2

x

)
σ2

x

(
v2σ2

t

v2σ2
t +σ2

x

)
σ2

xx′ 0 0 0(
v2σ2

t

v2σ2
t +σ2

x

)
σ2

xx′ σ2
x′ −

σ4
xx′

v2σ2
t +σ2

x
0 0 0

0 0 σ2
y σ2

yy′ 0
0 0 σ2

yy′ σ2
y′ 0

0 0 0 0 σ2
p−1


. (33)

The results for this type of measurement are pretty similar to the case of the
space point, except for the change of units between the track parameter x and time
measurement, and the fact that the y track parameters are not affected.
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5 Tilted Wire Hit as Measurement

In this section, we assume that a measurement consists of a time tm with error σt

measured using a wire rotated from vertical about the x-axis by angle θ. Assume
that the track is specified on the surface z = z0, and that the track surface intersects
with the measurement surface along the line y = y0, z = z0 (see Fig. 1). The track
intersects with the measurement surface at z-coordinate

zm = z0 +
y − y0

cot θ − y′
. (34)

The prediction function is

t =
x

v
+

x′ (y − y0)

v (cot θ − y′)
. (35)

The non-vanishing components of the Jacobian matrix (evaluated at y = y0) are

∂t

∂x
=

1

v
, (36)

∂t

∂y
=

x′

v (cot θ − y′)
. (37)

So, the full H matrix is

H =
[

1
v

0 x′

v(cot θ−y′)
0 0

]
. (38)

Figure 1: Intersection of track measured on z-plane with tilted wire surface, showing
most probably track hypothesis, and alternative track hypothesis obtained by varying
track parameter y.
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The residual error is

R = σ2
r = σ2

t +
σ2

x

v2
+

x′2σ2
y

v2 (cot θ − y′)2 . (39)

The Kalman gain matrix K is

K = CHT R−1, (40)

=


σ2

x σ2
xx′ 0 0 0

σ2
xx′ σ2

x′ 0 0 0
0 0 σ2

y σ2
yy′ 0

0 0 σ2
yy′ σ2

y′ 0
0 0 0 0 σ2

p−1





1
v

0
x′

v(cot θ−y′)

0
0


(

1

σ2
r

)
, (41)

=



σ2
x

vσ2
r

σ2
xx′

vσ2
r

x′σ2
y

v(cot θ−y′)σ2
r

x′σ2
yy′

v(cot θ−y′)σ2
r

0


. (42)

The filtered track parameter state vector is

x′ =



x +
(

σ2
x

vσ2
r

)
(tm − t)

x′ +
(

σ2
xx′

vσ2
r

)
(tm − t)

y +
[

x′σ2
y

v(cot θ−y′)σ2
r

]
(tm − t)

y′ +
[

x′σ2
yy′

v(cot θ−y′)σ2
r

]
(tm − t)

1/p


. (43)

The filtered track error matrix is

C′ =

σ2
x −

σ4
x

v2σ2
r

σ2
xx′ −

σ2
xσ2

xx′
v2σ2

r

−x′σ2
xσ2

y

v2(cot θ−y′)σ2
r

−x′σ2
xσ2

yy′

v2(cot θ−y′)σ2
r

0

σ2
xx′ −

σ2
xσ2

xx′
v2σ2

r
σ2

x′ −
σ4

xx′
v2σ2

r

−x′σ2
xx′σ

2
y

v2(cot θ−y′)σ2
r

−x′σ2
xx′σ

2
yy′

v2(cot θ−y′)σ2
r

0
−x′σ2

xσ2
y

v2(cot θ−y′)σ2
r

−x′σ2
xx′σ

2
y

v2(cot θ−y′)σ2
r

σ2
y −

x′2σ4
y

v2(cot θ−y′)2σ2
r

σ2
yy′ −

x′2σ2
yσ2

yy′

v2(cot θ−y′)2σ2
r

0
−x′σ2

xσ2
yy′

v2(cot θ−y′)σ2
r

−x′σ2
xx′σ

2
yy′

v2(cot θ−y′)σ2
r

σ2
yy′ −

x′2σ2
yσ2

yy′

v2(cot θ−y′)2σ2
r

σ2
y′ −

x′2σ4
yy′

v2(cot θ−y′)2σ2
r

0

0 0 0 0 σ2
p−1


.(44)

Here are a couple of observations about the filtered track parameters and errors.

• In general, both x and y track parameters are modified, and their errors are
reduced, by the tilted wire measurement.
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• The y track parameters are not affected if θ = 0 or if the track is traveling
parallel to the wire plane (x′ = 0). In either case, the track update is the same
as for a vertical wire measurement.

• The x and y track parameters get correlated by the tilted wire measurement.
However, if there are wires with both positive and negative θ, the average cor-
relation will tend to cancel out over many measurements.

• The prediction function and updating formulas are singular if the track is trav-
eling parallel to the wire in the yz-plane (y′ = cot θ).

With respect to the last point, among other pathologies, observe that the filtered
error σ2

y has the curious property that this error is exactly zero if y′ = cot θ. This
actually makes a kind of sense if you assume that the track surface is known exactly
(by assumption) and the measurement surface is also known exactly, and the track
exactly coincides with the measurement surface. What is missing in this analysis is
the fact that the measurement surface actually has a nonzero thickness. The thickness
of the measurement surface contributes to the time measurement error σt. In practice,
a track that was traveling parallel or nearly parallel to a wire should produce a very
broad pulse, and therefore, perhaps, a large intrinsic time measurement error σt. The
divergence of σt might prevent the filtered σy from becoming too small in cases where
a track is nearly parallel to a wire. Another way the updating formula breaks down
near y′ = cot θ is the assumption of linearity of the prediction function over a range
allowed by the track parameter errors. For these reasons, one should be alert for
possible pathologies in the case of a track traveling parallel to a wire in the yz plane.
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